Spin-one Heisenberg ferromagnet with three-atom exchange

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys.: Condens. Matter 61399
(http://iopscience.iop.org/0953-8984/6/7/011)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 12/05/2010 at 17:39

Please note that terms and conditions apply.

Spin-one Heisenberg ferromagnet with three-atom exchange

S N Mitra and K G Chakraborty \dagger
Department of Physics, Basirhat College, 24 Parganas (North), West Bengal-743412, India

Received 15 February 1993, in final form 1 September 1993

Abstract

We study the statistical mechanics of a spin-one ferromagnet with the nearestneighbour bilinear Heisenberg exchange constant J and the three-atom coupling constant L using the equation-of-motion method for the two-time temperature-dependent Green function. It is seen that, as the three-atom coupling parameter $\alpha=L / J$ is increased positively, the Curie temperature T_{C} first increases steeply and then increases very slowly and ultimately approaches the limiting value $k_{\mathrm{B}} T_{\mathrm{C}} / J z=\frac{4}{3}$ as α tends to infinity. The situation is much more complicated for negative α but, as $\alpha \rightarrow \infty, T_{\mathrm{C}}$ approaches the limiting value $\frac{4}{3}$. The temperature variation in spontaneous magnetization m and the quadrupolar ordering parameter λ for various values of α are studied. It is seen that there exists a critical value of α (which we shail call α_{c}) beyond which the phase transition is first order for $s c$, BCC and FCC lattices. α_{c} decreases as the number z of nearest neighbour increases. The discontinuity in m has been found to be extremely sensitive near α_{c}. The results are discussed with reference to those obtained by earlier workers.

1. Introduction

In this paper we present a study of the statistical mechanical properties of a three-dimensional spin-one Heisenberg ferromagnet with three-atom exchange in addition to the usual bilinear exchange, described by the following Hamiltonian (Iwashita and Uryu 1974, Munro and Girardeau 1976, Akasmit and Westwanski 1978, Adler and Oitmaa 1979):

$$
\begin{equation*}
H=-\sum_{i} \omega_{0} S_{i}^{z}-\sum_{i j} J_{i j} S_{i} \cdot S_{j}-\sum_{i j k} L_{i j k}\left(S_{i} \cdot S_{j}\right)\left(S_{j} \cdot S_{k}\right) \tag{1}
\end{equation*}
$$

where $\omega_{0}=\mu H_{\mathrm{a}}, \mu$ being the magnetic moment per site and H_{a} the applied magnetic field. $J_{i j}$ represents the usual bilinear exchange between two spins. S_{i} is the spin operator attached to the lattice site i. $L_{i j k}$ represents coupling between three spins. The higher-order exchange term seems to arise from the process of double-electron exchange. In equation (1) the well known biquadratic exchange term is absent. In fact, the above Hamiltonian is a special case of the general Hamiltonian considered by Munro and Girardeau (1976). The statistical mechanics of the model were studied by Adler and Oitmaa (1979) using the Green function equation-of-motion method. Munro and Girardean (1976) applied the molecular-field approximation (MFA) to an extended Hamiltonian, but in the MFA the effect of dimensionality of the lattice is not taken into account. In the Green function approach of Adler and Oitmaa the single-site Green functions were decoupled. The purpose of the present paper is to apply the random phase approximation (RPA) to decoupling the Green functions at a later stage. Two equations of motion-one for different sites and the other for the same sites-are developed and decoupled by the RPA, and the energy spectrum and other thermodynamic quantities are derived and computed subsequently.

[^0]
2. Equations of motion, energy spectrum and ordering parameters

Using equation (I) the equation of motion for the two-time temperature-dependent two-spin Green function $\left\langle\left\langle S_{f}^{+} ; S_{m}^{-}\right\rangle\right)(f, m$ being the lattice sites) may be readily derived (Zubarev 1960) and can be written in the following form:

$$
\begin{align*}
\left(\omega-\omega_{0}\right)\left\langle\left\langle S_{f}^{+}\right.\right. & \left.\left.; S_{m}^{-}\right\rangle\right\rangle=\frac{\left\langle S_{f}^{z}\right\rangle}{\pi} \delta_{f m}+2 \sum_{i} J_{i f}\left\langle\left\langle S_{i}^{z} S_{f}^{+}-S_{f}^{z} S_{i}^{+} ; S_{m}^{-}\right\rangle\right\rangle \\
& \quad-\sum_{j l} L_{f j l}\left\langle\left\langle S_{f}^{z} S_{l}^{z} \sigma_{j}^{+}+\frac{4}{3}\left(S_{f}^{z} S_{l}^{+}-S_{l}^{z} S_{f}^{+}\right)-\frac{1}{3} S_{f}^{z} S_{l}^{+} \lambda_{j}\right.\right. \\
& \left.\left.-\frac{2}{3} S_{f}^{+} S_{l}^{z} \lambda_{j}-\frac{1}{2} S_{f}^{+} S_{l}^{-} \sigma_{j}^{+}-\frac{1}{2} S_{f}^{+} S_{l}^{+} \sigma_{j}^{-} ; S_{m}^{-}\right\rangle\right\rangle \\
& -\sum_{i l} L_{i f l}\left\langle\left\langle-S_{i}^{z} S_{l}^{z} \sigma_{f}^{+}+S_{i}^{z} S_{l}^{+} \lambda_{f}+\frac{1}{2} S_{l}^{+} S_{l}^{-} \sigma_{f}^{+}+\frac{1}{2} S_{i}^{+} S_{l}^{+} \sigma_{f}^{-} ; S_{m}^{-}\right\rangle\right\rangle \tag{2}
\end{align*}
$$

where $\lambda_{i}=3\left(S_{i}^{z}\right)^{2}-2, \sigma_{i}^{ \pm}=S_{i}^{z} S_{l}^{ \pm}+S_{i}^{ \pm} S_{l}^{z}$, and the angular brackets denote the usual averages. σ_{i} will now be treated as a single operator. The equation of motion for the Green function $\left\langle\left\langle\sigma_{f}^{+} ; S_{m}^{-}\right\rangle\right\rangle$can be derived in the form

$$
\begin{align*}
\left(\omega-\omega_{0}\right)\left(\left\langle\sigma_{f}^{+} ;\right.\right. & \left.\left.S_{m}^{-}\right\rangle\right\rangle=\frac{\left\langle\lambda_{f}\right\rangle}{\pi} \delta_{f m}+2 \sum_{i} J_{i f}\left\langle\left\langle S_{i}^{z} \sigma_{f}^{+}-\lambda_{f} S_{i}^{+} ; S_{m}^{-}\right\rangle\right\rangle \\
& -\sum_{j l} L_{f j l}\left\langle\left\langle\lambda_{f} S_{l}^{z} \sigma_{j}^{+}+\frac{4}{3}\left(\lambda_{f} S_{l}^{+}-S_{l}^{z} \sigma_{f}^{+}\right)-\frac{1}{3} \lambda_{f} S_{l}^{+} \lambda_{j}\right.\right. \\
& \left.\left.-\frac{2}{3} \sigma_{f}^{+} S_{l}^{z} \lambda_{j}-\frac{1}{2} \sigma_{f}^{+} S_{l}^{-} \sigma_{j}^{+}-\frac{1}{2} \sigma_{f}^{+} S_{l}^{+} \sigma_{j}^{-} ; S_{m}^{-}\right\rangle\right\rangle \\
& \quad-\sum_{i l} L_{i f l}\left\langle\left\langle-S_{i}^{z} S_{l}^{z} S_{f}^{+}+S_{i}^{z} S_{l}^{+} S_{f}^{z}+\frac{1}{2} S_{i}^{+} S_{l}^{-} S_{f}^{+}-\frac{1}{2} S_{i}^{+} S_{l}^{+} S_{f}^{-} ; S_{m}^{-}\right\rangle\right\rangle \tag{3}
\end{align*}
$$

Neglecting the terms $S^{+} S^{+}$, Fourier-transforming to momentum space, decoupling the higher-order Green functions by the RPA and solving two linearized equations of motion, we finally arrive at the result

$$
\begin{align*}
& \left\langle\left\langle S_{k}^{+} ; S_{q}^{-}\right\rangle\right\rangle=(m / \pi) \delta_{k-q}\left(\omega-\omega_{k}\right)^{-1} \tag{4}\\
& \left\langle\left\langle\sigma_{k}^{+} ; S_{q}^{-}\right\rangle\right\rangle=(\lambda / \pi) \delta_{k-q}\left(\omega-\omega_{k}\right)^{-1} \tag{5}
\end{align*}
$$

where k and q are the momentum indices, and m and λ are the ordering parameters defined as $m=\left\langle S^{z}\right\rangle$ and $\lambda=3\left\langle\left(S^{z}\right)^{2}\right\rangle-2 . \omega_{k}$ represents the energy spectrum given by

$$
\begin{equation*}
\omega_{k}=\omega_{k}^{(1)} \pm M(k) \tag{6}
\end{equation*}
$$

with

$$
\begin{align*}
& \omega_{k}^{(1)}=\frac{1}{2}\left[4 m J_{0}-2 m J_{k}-\frac{1}{3} m(4-\lambda) L_{k k}+\frac{4}{3} m(2+\lambda) L_{00}-2 \lambda m L_{0 k}\right] \tag{6a}\\
& M(k)=\frac{1}{2}\left[\left[2 m J_{k}+\frac{1}{3} m(4-\lambda) L_{k k}+2 m^{2} L_{0 k}-2 m^{2} L_{00}\right]^{2}-8 m^{2}(\lambda-m) J_{k}\left(L_{00}-L_{0 k}\right)\right. \\
& \left.\quad-\frac{4}{3} m^{2}(4-\lambda)(\lambda-m) L_{k k}\left(L_{00}-L_{0 k}\right)\right\}^{1 / 2} \tag{6b}
\end{align*}
$$

where $J_{k}, L_{k k}$, etc, are the Fourier transforms of $J_{i j}, L_{i j k}$, etc (Akasmit and Westwanski 1978, Adler and Oitmaa 1979). Equation (6) represents two branches of the energy spectrum in contrast with the single branch obtained by Adler and Oitmaa. However, these two branches do not coincide, at $T=0$, with the exact result. Hence we shall consider that branch which leads to the exact result at $T=0$. It is seen that the negative sign satisfies this requirement and so we reject the positive sign. At $T=0$, equation (6) thus leads to

$$
\begin{equation*}
\omega_{k}=\omega_{0}+2\left(J_{0}-J_{k}\right)+3 L_{00}-2 L_{0 k}-L_{k k} \tag{7}
\end{equation*}
$$

which is exact.
The spontaneous magnetization m and the quadrupolar ordering parameter λ are obtained from the following equations:

$$
\begin{align*}
& m=(1+2 y) F(y) \tag{8a}\\
& \lambda=F(y) \tag{8b}
\end{align*}
$$

where the function $F(y)$ is given by

$$
\begin{equation*}
F(y)=\left(1+3 y+3 y^{2}\right)^{-1} \tag{8c}
\end{equation*}
$$

with

$$
\begin{equation*}
y=\frac{1}{N} \sum_{k}\left[\exp \left(\beta \omega_{k}\right)-1\right]^{-1} \tag{9}
\end{equation*}
$$

3. The Curie temperature

Following Akasmit and Westwanski (1978) we use the results $L_{00}=z L_{1}, L_{0 k}=z L_{1} \gamma_{k}$, $L_{k k}=z L_{1}\left(z \gamma_{k}^{2}-1\right) /(z-1), L_{1}=(z-1) L, J_{k}=z J \gamma_{k}, J_{0}=z J$ with

$$
\begin{equation*}
\gamma_{k}=\frac{i}{z} \sum_{k} \exp (\mathrm{i} k \cdot \delta) \tag{10}
\end{equation*}
$$

where z is the number of nearest neighbours, δ is the nearest-neighbour vector, and J and L represent the nearest-neighbour bilinear and three-atom exchange constants, respectively. The energy spectrum (equation (6)) can then be readily written as

$$
\begin{equation*}
\omega_{k}=\omega_{0}+2 m z J R_{k}\left(1-\gamma_{k}\right) \tag{11}
\end{equation*}
$$

where R_{k} is a renormalization factor given by the following expression:
$R_{k}=1+\frac{1}{6} \alpha z(4-\lambda)+\frac{1}{2} \alpha(z-1)(m+\lambda)+\frac{1}{6} \alpha z \gamma_{k}(4-\lambda)+\alpha(z-1)(\lambda-m) f\left(\gamma_{k}\right)$
where $\alpha=L / J$ and

$$
\begin{equation*}
f\left(\gamma_{k}\right)=N /\left(N+N^{\prime}\right) \tag{13}
\end{equation*}
$$

with

$$
\begin{align*}
& N=\gamma_{k}+\frac{1}{6} \alpha(4-\lambda)\left(z \gamma_{k}^{2}-1\right) \tag{14a}\\
& N^{\prime}=-\alpha(z-1) m\left(1-\gamma_{k}\right) \tag{14b}
\end{align*}
$$

Expanding $f\left(\gamma_{k}\right)$ in powers of γ_{k} and substituting in the energy spectrum, one can include terms up to any desired order and obtain the computed values of m, λ and T_{C}. Instead of this, we consider only the leading term of the expansion of $f\left(\gamma_{k}\right)$ so that we can write

$$
\begin{equation*}
R_{k}=R\left(1+\mu \gamma_{k}\right) \tag{15}
\end{equation*}
$$

R being given by

$$
\begin{equation*}
R=1+a \alpha z+b \alpha+\alpha P \tag{15a}
\end{equation*}
$$

with

$$
\begin{align*}
& \mu=a \alpha z / R \tag{15b}\\
& a=\frac{1}{6}(4-\lambda) \tag{15c}\\
& b=\frac{1}{2}(m+\lambda)(z-1) \tag{15d}\\
& P=\frac{1}{2}(\lambda-m)(z-1) a[a+m(z-1)]^{-1} . \tag{15e}
\end{align*}
$$

Using the above simplifications, one can easily write the explicit expressions for m and λ. We do not present these expressions here; rather we shall concentrate on the Curie temperature. Taking the limit $\omega_{0} \rightarrow 0, m \rightarrow 0$, we arrive at the following expression for the Curie temperature T_{C} :

$$
\begin{equation*}
T_{\mathrm{C}}=\frac{4}{3} z\left(J / k_{\mathrm{B}}\right)\left(R_{0} / F_{0}\right) \tag{16}
\end{equation*}
$$

where R_{0} and F_{0} are the values of R and F at T_{C}, F being defined by

$$
\begin{equation*}
F=(1-\mu)^{-1}[I-\mu(I-1)] \tag{17}
\end{equation*}
$$

where I is the usual Watson sum given by

$$
\begin{equation*}
I=\frac{1}{N} \sum_{k}\left(1-\gamma_{k}\right)^{-1} \tag{17a}
\end{equation*}
$$

In computing F_{0}, the parameter μ is to be replaced by μ_{0}, the latter being obtained from equations ($15 a$)-($15 e$) in the limit $\omega_{0} \rightarrow 0, m \rightarrow 0$.

4. Results and discussion

For computations of m, λ and T_{C} we shall use the symbols $\alpha=L / J, \alpha^{\prime}=\alpha /(z-1)$, $t_{\mathrm{C}}=k_{\mathrm{B}} T_{\mathrm{C}} / 4 J z$ and $t=k_{\mathrm{B}} T / 4 J z$. The values of t_{C} for the SC, BCC and FCC lattices have been calculated for both positive and negative values of α. Firstly the results show that, for α approaching infinity, t_{C} for all lattices converges to the interesting limiting value $\frac{1}{3}$. This value of t_{C} is exactly equal to that of a simple spin-one Heisenberg ferromagnet in the MFA. In addition to this, it has been found that, as α increases from zero, t_{C} first increases sharply, then increases slowly and ultimately approaches the limiting value. For negative α, the nature of the variation in t_{C} is complicated. This complication arises because, for negative α, the ferromagnetic state ceases to be stable, at least for α less than a certain limiting value. In fact, we have seen that, as α increases negatively, the critical values α_{0} at which t_{C} vanishes are $-0.30,-0.208$ and -0.132 for SC, BCC and FCC lattices, respectively. The vanishing of t_{C} at a certain negative value of α agrees qualitatively with that obtained by Munro and Girardeau.

If one considers more negative values, there is a range of α (we call this range 'forbidden') where t_{C} is negative, but, after this range, t_{C} decreases from an infinitely large value as α increases to more negative values; eventually t_{C} approaches the limit $\frac{1}{3}$ in the limit $\alpha \rightarrow-\infty$. All these results are shown in figures 1 and 2 .

Figure 1. The variation in $k_{\mathrm{B}} T_{\mathrm{C}} / 4 \mathrm{~J} z$ with α for $\mathrm{SC}, \mathrm{BCC}$ and FCC lattices: --- , limiting value of $k_{\mathrm{B}} T_{\mathrm{C}} / 4 \mathrm{Jz}=\frac{1}{3}$ for $\alpha \rightarrow \infty$.

Some interesting aspects have been observed in the studies of thermal variation in m and λ. The results for SC, BCC and FCC lattices for a wide range of values of α have been computed and analysed. The results are summarized in figures 3-7. The results of computation show that there exists a critical value α_{c} beyond which m and λ become double valued at and beyond T_{C}, forming a bulge near T_{C}. It is seen that the bulge is more pronounced for large α. Only the bulge for $\alpha=0.2, z=6$, is shown. It appears that both m and λ jump discontinuously at T_{C}, and the first-order phase transition occurs for all lattices. The value of α_{c} was estimated roughly by Adler and Oitmaa (1979) for a

Figure 2. The variation in $k_{\mathrm{B}} T_{\mathrm{C}} / 4 \mathrm{Jz}$ with negative values of α for the FCC lattice: \cdots-- limiting value of $k_{\mathrm{B}} T_{\mathrm{C}} / 4 \mathrm{Jz}=\frac{1}{3}$.

SC lattice. The value obtained in the present treatment for the SC lattice is slightly lower than their value. The values of α_{c} for the SC, BCC and FCC lattices obtained in the present paper are $0.489,0.324$ and 0.194 , respectively. Thus α_{c} decreases as z increases. It may also be noted that only one phase transition exists-the transition which occurs from the ferroquadrupolar phase ($m \neq 0 ; \lambda \neq 0$) to the paramagnetic phase ($m=0 ; \lambda=0$)-and that no separate quadrupolar phase exists.

Figure 3. The variation in m with $k_{\mathrm{B}} T / 4 J z$ for the SC lattice and for several values of the reduced coupling parameter $\alpha^{\prime}=\alpha /(z-1)$, where only the bulge for $\alpha^{\prime}=0.2$ beyond T_{C} is shown: ----, discontinuities.

Figure 4. The variation in m with $k_{\mathrm{B}} T / 4 J z$ for the BCC lattice for $\alpha^{\prime}=0.02,0.05$ and 0.1 : ----, discontinuities.

Figure 5. The magnetization curves for the FCC lattice for $\alpha^{\prime}=0.01,0.02$ and $0.05:-\cdots$, discontinuities.

We have also carried out computations for m for small values of α for all the three lattices. The results are presented in table 1 . Single-valued m and λ are denoted by 1 and double-valued m and λ by 2 . The values of α_{c} are also presented.

Finally, we have computed the magnitude of the discontinuous change Δm_{s} in the spontaneous magnetization at T_{C}. The variation in Δm_{s} with α for the SC, BCC and FCC lattices is represented in figure 7. It should be observed that Δm_{s} is extremely sensitive near α_{c} as demonstrated by the almost vertical nature of the curve. However, away from α_{c} the value of Δm_{s} increases very slowly and remains almost constant at large α, reaching the value $\Delta m_{s}=1$ for $\alpha \rightarrow \infty$. We also note that, for the same value of $\alpha, \Delta m_{s}$ is larger for larger z.

It is worth noting in this connection that, using the generalized mean-field approximation, Munro and Girardeau (1976) estimated Δm_{s} for the case of biquadratic exchange only. They observed that the sensitivity mentioned above is much less than that occurring in the present case of three-atom exchange. However, the entire problem should be re-examined in the

Figure 6. The temperature variation in the quadrupolar ordering parameter λ for the sc lattice corresponding to $\alpha^{\prime}=0.05,0.1$ and $0.2:-\cdots$, discontinuities.

Figure 7. The magnitude Δm_{s} of the discontinuous jump in the spontaneous magnetizaiton plotted against α for SC, BCC and FCC lattices.
light of the Green function approximation.

5. Concluding remarks

The Green function study of a spin-one Heisenberg ferromagnet with three-atom exchange presented in the preceding sections yields several special features which may be summarized as follows.
(1) A first-order transition appears at T_{C}, the Curie temperature, above $\alpha>\alpha_{c}$ for SC , BCC and FCC lattices, α_{c} decreasing as z increases. Below α_{c} the transition is second order.
(2) As the three-atom coupling parameter α increases positively, T_{C} increases sharply at first and then slowly, gradually approaching the limiting value $k_{\mathrm{B}} T_{\mathrm{C}} / z J=\frac{4}{3}$, which is identical with the molecular-field value for a Heisenberg ferromagnet without the three-atom exchange.
(3) As α increases negatively, it has been found that there exists a critical value α_{0} at which T_{C} vanishes.

Table 1. Multiplicity of the roots of m and λ at $t \mathrm{C}+0.0001$ for $\mathrm{SC}, \mathrm{BCC}$ and FCC lattices for several values of α. The superscript c in the first column denotes the critical value of α, corresponding to that lattice for which m and λ are double valued. Single valued is denoted by 1 and double valued by 2 .

α	Multiplicity of roots of m and λ			
	sc	. CC	FCC	
0.0001	1	1	1	
0.001	1	1	1	
0.01	1	1	1	
0.1	1	1	1	
$0.194^{\text {c }}$	1	1	2	
0.2	1	1	2	
0.3	1	1	2	
$0.324^{\text {c }}$	1	2	2	
0.4	1	2	2	.
$0.489^{\text {c }}$	2	2	2	
0.5	2	2	2	
0.6	2	2	2	

The disappearance of T_{C} at a certain negative value of α, however, agrees qualitatively with the work of Munro and Girardeau; on further negative increase in α, t_{C} becomes negative and, as α increases still further negatively, t_{C} decreases from an infinitely large positive value, ultimately approaching the same molecular-field limit.

As it has been observed by Munro and Girardeau that the $S=1$ model does not favour partially ordered states and also since, for large negative α, the ferromagnetic spin alignment is presumably not favoured, we may conjecture that the phase transition for large negative α, as shown in figure 2 , might correspond to the antiferromagnetic-to-paramagnetic phase transition. It should be noted that figure 2 corresponds only to the FCC lattice and that the same type of variation has also been found for SC and BCC lattices.

Finally, it is necessary to point out that the expansion of $f\left(\gamma_{k}\right)$ has been found to be extremely sensitive and one should be careful about the expansion and about the consideration of terms in the expansion. In addition to the leading term, which has been considered here, other higher-order terms should also be included for improved results. Unfortunately the higher-order terms are so complicated that at present we are not able to include the contribution from these terms. These aspects will be the subject of future investigations where we shall also include the effects of biquadratic exchange. For quantitatively more accurate formulation we need to develop a more rigorous procedure and in this respect the irreducible Green function theory (Chakraborty 1988, 1989) is important and work in this direction is in progress. Some initial work has already been completed and we have noted some similarities to the phase transitions in the Ising model with multi-spin coupling (Chakraborty 1992).

References

Adler I and Oitmaa J 1979 J. Phys. C: Solid State Phys. 12575
Akasmit J. and Westwanski B 1978 J. Phys. C: Solid State Phys. 113471
Chakraborty K G 1988 Phys. Rev. B 382792
-_ 1989 J. Phys.: Condens. Matter 12691

Chakraborty K G 1992 J. Magn. Magn. Mater. 114155
Iwashita T and Uryu N 1974 J. Phys. Soc. Japan 3648
Munro R G and Girardeau M D 1976 J. Magn. Magn. Mater. 2319
Zubarev D N 1960 Usp. Fiz. Nauk 7171 (Engl. TransI. 1960 Sov. Phys. Usp. 3 320)

[^0]: \dagger Author to whom correspondence should be addressed.

