
Spin-one Heisenberg ferromagnet with three-atom exchange

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 1399

(http://iopscience.iop.org/0953-8984/6/7/011)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 12/05/2010 at 17:39

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/6/7
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


I. Phys.: Condens. Maner 6 (1994) 1399-1408. Printed in the UK 

Spin-one Heisenberg ferromagnet With three-atom exchange 

S N Mitra and K G Chakrabortyt 
Depamnent of Physics, BasirhaI College, 24 Parganas (North), West Bengal-743412, India 
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Abstract. We study the statistical mechanics of a spin-one ferromagnet with the nearest- 
neighbour bilinear Heisenberg exchange constant J and the three-atom coupling constant L 
using the equation-of-motion method for the hvo-time temperature-dependent Green function. 
It is seen that, as the three-atom coupling parameter a = L/J is increased positively, the Curie 
temperature TC first increases steeply and then increases vety slowly and ultimately approaches 
the limidng value k~Tc/Jr = $ as a tends to infinity. The situation is much more complicated 
for negative a but, as a + m, Tc approaches the limiting value $. The temperature variation 
in spontaneous magnetization m and the quadrupolaf ordering parameter I for. various values of 
a are. shldied. It is seen that there exists a critical value of a (which we shall call ac) beyond 
which the phase m i t i o n  is first order for sc, BCC and FCC lattices. cG decreases as the number z 
of nearest neighbour increases. The discontinuity in m has been found to be exemely sensitive 
near a<. The results are discussed with reference to those obtained by earlier workers. 

1. Introduction 

In this paper we present a study of the statistical mechanical properties of a threedimensional 
spin-one Heisenberg ferromagnet with three-atom exchange in addition to the usual bilinear 
exchange, described by the following Hamiltonian (Iwashita and Uryu 1974, Munro and 
Girardeau 1976, Akasmit and Westwanski 1978, Adler and Oitmaa 1979): 

. where 00 = pHa, p being the magnetic moment per site and Ha the applied magnetic 
field. Jij  represents the usual bilinear exchange between two spins. Si is the spin operator 
attached to the lattice site i. &jk represents coupling between three spins. The higher-order 
exchange term seems to~arise from the process of double-electron exchange. In equation 
(1) the well known biquadratic exchange term is absent. In fact, the above Hamiltonian 
is a special case of the general Hamiltonian considered by Mnnro and Girardeau (1976). 
The statistical mechanics of the model were studied by Adler and Oitmaa (1979) using 
the Green function equation-of-motion method. Munro and Girardeau (1976) applied the 
molecular-field approximation (MFA) to an extended Hamiltonian, but in the MFA the effect 
of dimensionality of the lattice is not taken into account. In the Green function approach 
of Adler and Oitmaa the single-site Green functions were decoupled. The purpose of the 
present paper is to apply the random phase approximation (RPA) to decoupling the Green 
functions at a later stage. WO equations of motion-ne for different sites and the other 
for the same sites-are developed and decoupled by the RPA, and the energy spectrum and 
other thermodynamic quantities are derived and computed subsequently. 
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2. Equations of motion, energy spectrum and ordering parameters 

Using equation (1) the equation of motion for the two-time temperature-dependent two-spin 
Green function ((S;; S;)) (f, m being the lattice sites) may be readily derived (Zubarev 
1960) and can be written in the following form: 
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where Ai = 3(S:)2 - 2, U: = S:S,? + S,?Sf, and the angular brackets denote the usual 
averages. ui will now be treated as a single operator. The equation of motion for the Green 
function ((U,?; Si ) )  can be derived in the form 

NegIecting the terms S+S', Fourier-transforming to momentum space, decoupling the 
higher-order Green functions by the RPA and solving two linearized equations of motion, 
we finally arrive at the result 
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where J k ,  Lkk, etc, are the Fourier transforms of Jij ,  Lijk. etc (Akasmit and Westwanski 
1978, Adler and Oitmaa 1979). Equation (6) represents two branches of the energy spectrum 
in contrast with the single branch obtained by Adler and Oitmaa. However, these two 
branches do not coincide, at T = 0, with the exact result. Hence we shall consider that 
branch which leads to the exact result at T = 0. It is seen that the negative sign satisfies 
this requirement and so we reject the positive sign. At T = 0, equation (6) thus leads to 

6Jk = WO + 2(Jo - Jk) + 3Lix - 2Lok - Lkk (7) 

which is exact. 
The spontaneous mametization m and the quadrupolar ordering parameter A are obtained - 

from the following equations: 

m = (1 + ~Y)F(Y)  

A = F(Y) 

where the function F(y)  is given by 

F ( y )  = (1 + 3y + 3y3-1 

with 

3. The Curie temperature 

1 -  yk = ; exp(ik .S) 
k 

where z is the number of nearest neighbours, 8 is the nearest-neighbour vector, and J and 
L represent the nearest-neighbour bilinear and three-atom exchange constants, respectively. 
The energy spectrum (equation (6)) can then be readily written as 

O k  = W O  + ZmzJRk(1 - Y k )  (11) 

where Rk is a renormalization factor given by the following expression: 

R k  = 1 + iolZ(4 - A) + &t(z - I ) (n  +A) + &W,yx(4 -A) + a(z - l)(h - m)f(yk) (12) 
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where (Y = L/ J and 
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with 

Expanding f ( y k )  in powers of Yk and substituting in the energy spectrum, one can include 
terms up to any desired order and obtain the computed values of m, I and Tc. Instead of 
this, we consider only the leading term of the expansion of f ( Y k )  so that we can write 

Rk = R(1  i- PYd (15) 

R being given by 

R =  l + u a z + b ( ~ + ( ~ P  (154 

with 

/I = a a z / R  

a = : ( 4 - h )  

b = $(m + i ) ( z  - I)  

1 P = s(A - m)(z - l)a[a +m(z - I)]-'. 

Using the above simplifications, one can easily write the explicit expressions for m 
and I .  We do not present these expressions here; rather we shall concentrate on the Curie 
temperature. Taking the limit --f 0, m -3. 0, we arrive at the following expression for 
the Curie temperature Tc: 

T~ = ; z ( J / ~ ~ ) ( R ~ / F ~ )  (16) 

where Ro and FO are the values of R and F at Tc, F being defined by 

F = (1 - p1-9  - @ ( I  - 1)1 (17) 

where I is the usual Watson sum given by 

In computing Fo, the parameter p is to be repiaced by /IO, the latter being obtained from 
equations (15a)-(15e) in the limit 00 --f 0, m -+ 0. 



Spin-one Heisenberg ferromagnet with three-atom exchange 1403 

4. Results and discussion 

For computations of m, A and TC we shall use the symbols a = L / J ,  a’ = a / ( z  - I), 
rc = k ~ T c / 4 J z  and t = k ~ T f 4 J z .  The values of tc for the SC, BCC and FCC lattices have 
been calculated for both positive and negative values of a. Firstly the results show that, 
for a approaching infinity, fc for all lattices converges to the interesting limiting value 4. 
This value of tc is exactly equal to that of a simple spin-one Heisenberg ferromagnet in the 
MFA. In addition to this, it has been found that, as a increases from zero, rc fust increases 
sharply, then increases slowly and ultimately approaches the limiting value. For negative 
a, the nature of the variation in tc is complicated. This complication arises because, for 

limiting value. In fact, we have seen that, as a increases negatively, the critical values a0 at 
which fc vanishes are -0.30, -0.208 and -0.132 for SC, BCC and FCC lattices, respectively. 
The vanishing of tc at a certain negative value of a agrees qualitatively with that obtained 
by Munro and Girardeau. 

If one considers more negative values, there is a range of a (we call this range 
‘forbidden’) where tc is negative, but, after this range, rc decreases from an infinitely 
large value as a increases to more negative values; eventually tc approaches the limit f in 
the limit a + --CO. All these results are shown in figures 1 and 2, 

negative a, the ferromagnetic state ceases to be stable, at least for a less than a certain 
~~ 

0.201 I I 
0 1 

4 
Figure 1. The variation in h T c / 4 J z  with 01 for sc, BCC and m lattices: ----,limiting value 
of keTc/4Jz = f for e --+ M. 

Some interesting aspects have been observed in the studies of thermal variation in m 
and A. The results for sc, BCC and FCC lattices for a wide range of values of a have 
been computed and analysed. The results are summarized in figures 3-7. The results 
of computation show that there exists a critical value ac beyond which m and A become 
double valued at and beyond Tc, forming a bulge near Tc. It is seen that the bulge is 
more pronounced for large a. Only the bulge for a = 0.2, z = 6, is shown. It appears 
that both m and A jump discontinuously at Tc, and the first-order phase transition occurs 
for all lattices. The value of ac was estimated roughly by Adler and Oitmaa (1979) for a 
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0 I I 
0 -0.1 -0.2 -0.3 -0  

U 

Figure 2. The variation in keTc/4Jr with negative values of a for the Fcc lattice: ----. limiting 
value o i k e T c f 4 f z =  f .  

sc lattice. The value obtained in the present treatment for the sc lattice is slightly lower 
than their value. The values of a, for the sc, BCC and FCC lattices obtained in the present 
paper are 0.489, 0.324 and 0.194, respectively. Thus ac decreases as z increases. It may 
also be noted that only one phase transition exists-the transition which occurs from the 
ferroquadrupolar phase (m # 0; h # 0) to the paramagnetic phase (m = 0; h = 0)-and 
that no separate quadrupolar phase exists. 

Figure 3. The variation in m with k ~ T / 4 J z  for the sc ianice and for s e v d  values of the 
reduced coupling parameter a' = a/ (z  - I) ,  where only the bulge far a' = 0.2 beyond Tc is 
shown: ----. discontinuities. 
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Figure 4. The variation in m with k ~ T j 4 J r  for the BCC lattice for 01' = 0.02, 0.05 and 0.1: 
._.. , discontmuities. 

kST/L Jz 

Figure S. The magnetization curves for the FCC lattice for 0' = 0.01, 0.02 and 0.05: ----. 
discontinuities. 

We have also carried out computations for m for small values of a for all the three 
lattices. The results are presented in table 1. Single-valued m and X are denoted by 1 and 
double-valued m and h by 2. The values of ac are also presented. 

Finally, we have computed the magnitude of the discontinuous change Amb in the 
spontaneous magnetization at Tc. The variation in Am, with a for the SC, BCC and FCC 
lattices is represented in figure 7. It should be observed that Am, is extremely sensitive 
near ac as demonstrated by the almost vertical nature of the curve. However, away from 
ac the value of Ams increases very slowly and remains almost constant at large a, reaching 
the value Amb = 1 for a + CO. We also note that, for the same value of a, Am, is larger 
for larger z. 

It is worth noting in this connection that, using the generalized mean-field approximation, 
Munro and Girxdeau (1976) estimated Ams for the case of biquadratic exchange only. They 
observed that the sensitivity mentioned above is much less than that occurring in the present 
case of three-atom exchange. However, the entire problem should be re-examined in the 
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a‘=0.2 

6’. 0.1 
0.5 ’.OR d:0.05 

0 0.1 0.2 0.3 
k T l L J z  

0 I 1  

Figure 6. The temperature variation in the q U a d N p O h  ordering panmeter A for the sc lattice 
corresponding to a’ = 0.05, 0.1 and 0.2 ----. discontinuities. 

Figure 7. The magnitude Ams of the discontinuous jump in the spontaneous magnetizaiton 
plotted against .Y for sc, BW and FCC lat&?.s. 

light of the Green function approximation 

5. Concluding remarks 

The Green function study of a spin-one Heisenberg ferromagnet with threeatom exchange 
presented in the preceding sections yields several special features which may be summarized 
as follows. 

(1) A first-order transition appears at Tc, the Curie temperature, above a! z for sc, 
BCC and FCC lattices, aC decreasing as z increases. Below a!c the transition is second order. 

(2) As the three-atom coupling parameter (Y increases positively, TC increases sharply 
at first and then slowly, gradually approaching the limiting value kBTc/zJ = 4, which is 
identical with the molecular-field value for a Heisenberg ferromagnet without the three-atom 
exchange. 

(3) As a! increases negatively, it has been found that there exists a critical value a ! ~  at 
which TC vanishes. 
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Table 1. Multiplicity of the mots of m and A at tc + 0.0001 for sc. BCC and FCC l a "  
for several values of a. The supscript c in lhe first column denotes the critical value of a, 
corresponding to ulat lattice for which m and A are double valued. Slngle valued 1s denoted by 
1 and double valued by 2. 

Multtplicity of mom of m and A 

a SC BCC TCC 

0.0001 I 1 1 
0.001 1 1 1 
0.01 1 1 1 
0.1 1 1  1 
0.194' 1 1 2 
02  1 1  2 
0.3 1 1  2 
0.324c 1 2 2 
0.4 1 2  2 
0.48gC 2 2 2 
0.5 2 2  2 
0.6 2 2  2 

The disappearance of TC at a certain negative value of a, however, agrees qualitatively 
with the work of Munro and Girardeau; on further negative increase in 0r . t~  becomes 
negative and, as (Y increases still further negatively, tc decreases from an infinitely large 
positive value, ultimately approaching the same molecular-field limit. 

As it has been observed by Munro and Guardeau that the S = 1 model does not favour 
partially ordered states and also since, for large negative (Y, the ferromagnetic spin alignment 
is presumably not favoured, we may conjecture that the phase transition for large negative 
a, as shown in figure 2, might correspond to the antiferromagnetic-to-paramagnetic phase 
transition. It should be noted that figure 2 corresponds only to the FCC lattice and that the 
same type of variation has also been found for sc and BCC lattices. 

Finally, it is necessary to point out that the expansion of f (yk) has been found to 
be extremely sensitive and one should be careful about the expansion and about the 
consideration of terms in the expansion. In addition to the leading term, which has 
been considered here, other higher-order terms should also be included for improved 
results. Unfortunately the higher-order terms are so complicated that at present we are 
not able to include the contribution from these terms. These aspects will be the subject of 
future investigations where we shall also include the effects of biquadratic exchange. For 
quantitatively more accurate formulation we need to develop a more rigorous procedure and 
in this respect the irreducible Green function theory (Chakraborty 1988, 1989) is important 
and work in this direction is in progress. Some initial work has already been completed and 
we have noted some similarities to the phase transitions in the king model with multi-spin 
coupling (Chakraborty 1992). 
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